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Abstract. The velocity of sound in rock is a strong
function of pressure, indicating that wave propagation
in rocks is very nonlinear. The quasistatic elastic prop-
erties of rocke are hysteretic, possessing discrete mem-
ory. In this paper a new theory is developed, placing all
of these properties (nonlinearity, hysteresis, and mem-
ory) on equal footing, The starting point of the new
theory is closer to a microscopic description of a rock
than the starting point of the traditional five-constant
theory of nonlinear elasticity. However, this starting
point (the number density p of generic mechanical ele-
ments in an abstract space) is deliberately independent
of a specific microscopic model. No prejudice is imposed
as to the mechanism causing nonlinear response in the
microscopic mechanical elements. The new theory (1)
relates suitable stress-strain measurements to the num-
ber density p and (2) uses the number density p to find
the behavior of nonlinear elastic waves. Thus the new
theory provides for the synthesis of the full spectrum of
elastic behaviors of a rock. Early development of the
new theory is sketched in this contribution.

1 Introduction

The purpose of this paper is to give an overview of a
comprehensive theory of the nonlinear elastic behavior
of consolidated materials. We focus on rock. This the-
ory establishes a framework for the synthesis of static
and dynamic phenomena. The central construct that
makes this synthesis possible is the Preisach-Mayergoyz
(P-M) space picture of the behavior of the mesoscopic
mechanical elements in the rock. These mechanical el-
ements are responsible for the macroscopic linear and
nonlinear elastic behavior of the rock. In broad outline
the theory uses static stress-strain data to determine the
density p of mechanical elements in P-M space. From
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the density p the dynamic elastic response of the sys-
tem is determined. The connection between static and
dynamic behavior, provided by the P-M space picture,
yields a qualitative and quantitative description of the
relationship between the static and dynamic modulii.
It yields a description of nonlinear wave propagation
in qualitative and quantitative agreement with experi-
ment.

To place this theory in context we begin in Sect. 2 with
a brief sketch of the traditional (or “five constant”) the-
ory of nonlinear wave propagation and description of
gome of the nonlinear phenomena admitted by it. We
draw attention to well known stress-strain experiments
on rocks; the stress-strain equation of state has hystere-
sis with discrete memory. These empirical facts about
the nature of rocks are at odds with the five constant
theory. A theory faithful to the most rudimentary elas-
tic properties of rocks is described in Sects. 3-5. In
Sect. 3 we introduce the P-M space construct for track-
ing the behavior of a collection of hysteretic mechani-
cal elements. We show that a stress-strain equation of
state with hysteresis and discrete memory follows. The
important physical quantity in this description of the
stress-strain equation of state is p, the density of me-
chanical elements in P-M space. This density takes the
place of the five constants of the traditional theory. In
Sect. 4 we show how p is found from experiments mea-
suring the static modulus. Finding p requires the solu-
tion of an ill-posed inverse problem. Using a simulated
annealing procedure and static modulus data, we find p
for a Berea sandstone. With p in hand, the problem of
elastic wave propagation (dynamics) is straightforward.
We sketch the formulation of the linear and nonlinear
elastic wave propagation problem in Sect. 5. A conse-
quence of the formulation is that the dynamic modulus
is greater than or equal to the static modulus. Although
most of the consequences of implementing this formula-
tion have yet to be worked out, we give one example. For
a resonant bar experiment, for which the five-constant
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theory is wrong both qualitatively and quantitatively,
the new paradigm is in excellent agreement with exper-
iment. The quantitative agreement results from using
the P-M space density found from static measurements
of the modulus, Sect. 4, illustrating the power of the
hew paradigm.

2 Review of the traditional theory

Rocke are consclidated materials. Their elastic proper-
ties are importantly influenced by the basic structural
features in their makeup, e.g., contacts, grain bound-
aries, cracks, joints, and residual fluids. The extant
theory of the nonlinear elastic behavior of rocks is the
theory of the nonlinear elasticity of homogeneous solids.
The theoretical framework that we introduce in Sect. 3
differs from this traditional theory both qualitatively
and quantitatively. It predicts phenomena that ate not
found in the traditional theory and gives quantitatively
different answers for behavior predicted by both theo-
ries. To have the basic features of the traditional theory
in hand we review it here. '

2.1 The five-constant theory

The traditional theory of the nonlinear elasticity of ho-
mogeneous materials is based on developing the elastic
energy density as an analytic function of the strain field.
This is done by constructing the scalar invariants of the
strain tensor (Landau and Lifshitz, 1959; Murnaghan,
1951). Landau and Lifshitz (1959) derive the equation
of motion for the displacement field u using

K
£ = ,ue?,,+(i-§)cﬁ

A
+§€|‘kfii€ki + Beken + g—fﬂ + O(e*), (1)
o€
Tik = Ws (2)
By, oy
PR = By ®

where £ i8 the energy density, py is a constant mass
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The constants u, K, A, B, and C are found in principle
from experiment; for example K and u are related to
the longitudinal and transverse velocities of sound. The
theory embodied in Egs. (1)-(4) is often called the five-
constant theory of nonlinear elasticity.

2.2 Nonlinear phenomena

The early paper by Gol‘dberg (1960) illustrates appli-
cation of the Landau theory scheme to propagation of
longitudinal and transverse disturbances in one direc-
tion, the z-direction, u oc exp tkz. For the displacement
fields in the z and y directions, u; and uy, Gol‘dberg
(1960) finds to order u?

potiy — aty = Sg + Bugul + yujuy, (5)
and
polly — puy = Sy + yupuy + yuyug. (6)

where 8u/8t = 4, Oufdz = u', S; and S, are the
sources of longitudinal and transverse distrubances, and
the constants «, # and v are linear combinations of K,
p, A, Band C
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Equations (5) and (6) admit a variety of nonlinear pro-
cesses.

1. (S: # 0,5y = 0) A longitudinal wave is launched
that in second order (i.e., the term Sulul in the u,
equation) coalesces to produce longitudinal waves
at frequencies w+w = 2w and w—w = 0. Thisis an
[ 4+ ! — | process, where ! stands for a longitudinal
wave.

2. (8: =0,8, # 0) A transverse wave is launched that

in second order (due to yuyuy in the u; equation}
coalesces to produce a longitudinal wave, Thisis a
t +t — [ process, where ¢ stands for a transverse

wave. There is no ¢t +t — 1 process.

3. (52 # 0,5, # 0) A longitudinal wave and a trans-
verse wave are launched that in second order (due
to y(uzuy + uyul) in the u, equation) coalesce to
produce a transverse wave. This isan [+t — ¢
process.

4. 5; may produce a static distortion, a constant value
of uy, that modifies the sound velocity for a longi-
tudinal wave. A scheme to measure A, B and C can
be developed using this coupling. Similar observa-
tions apply to application of a constant torque.

Items 1-4 are a few of the consequences of nonlinearity;
they are the physical events behind strong ground mo-
tion, bent tuning-fork curves, etc. A systematic treat-
ment of the problem set by equations like Eqs. (5) and
(6) has been given by McCall (1994), using a Green
function procedure. This treatment lets one picture the



physical procesees that occur in the rock and see the in-
volvement of the physical parameters, e.g., the strength
of the strain, A/e, B/o, and C/a. This treatment is
accompanied by a language that facilitates the descrip-
tion of nonlinear phenomena and has commonality with
the description of similar processes in other contexts.
The @ and g terms in the equations of motion, coming
from terme in the energy that are quadratic in u, are the
harmonic terms. The terms in the energy that are cubic
and quartic in u are called the cubic and quartic anhar-
monicities. The cubic anharmonicity is responsible for
the 3-wave processes, items 1-3 above.

The equations investigated by Gol‘dberg (1960) include
only cubic anharmonicity. An exhaustive description
of the possible three-wave processes permitted by cu-
bic anharmonicity has been given by Jones and Kobett
(1963). The static/dynamic couplings described under
item 4 are 3-wave processes in which one of the waves isa
static wave with wavevector k — 0. A description of the
coupling of acoustic waves to static displacement fields
has been given by Johnson and Rasolofosaon (1993).
The nonlinear coeflicients A, B and C have recently
been measured for a Berea sandstone in experimente in
which a sound wave was coupled to static displacement
fields {Johnson et al., 1994). The traditional theory, in
which the stress is taken to be an analytic function of
the strain, has been very successful in describing wave
propagation in many homogeneous materials (Ashcroft
and Mermin, 1976; Ilinskii and Zabolotskaya, 1992).

2.3 Order of magnitude

The orders of magnitude of the harmonic elastic con-
stants & and x (or K and u) are found from the veloci-
ties of sound. In a typical rock at atmospheric pressure

¢ % (2000m/8)? ~ pﬁ, (10)
0

where ¢; is the compressional velocity. Using po a2 2-4
gm/em3, o & p o K o 101 dyne/cm? & 10000 MPa.
Estimates of the order of magnitude of the cubic and
quartic anharmonicity come from writing

e [l+8(V-u)+6(7-u). (11)
At a pressure of order 100 MPa the velocity of sound of
a typical rock (see chapter 10 of Bourbie et al. (1987))
hae saturated at about twice the atmospheric pressure
value. Using AP =2 —~KV ' u, Eq. (11) becomes
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Ignoring the quartic anharmonicity for the moment, the
requirement that ¢ s 2cZ when AP/K = 0.01 gives
—BAP/K = 1or B s ~100. Retaining the quartic term
and requiring ¢ to saturate at AP/K = 0.01 means
¢%(2[0.01]) =~ 2¢3,
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and § /s —f% & —10%. These estimates are very crude
but they point to the fact that A/a, B/o, and C/e for
rock are large compared to 1 and large compared to A/,
B/o and C/e for normal materials. It must be empha-
sized that the size of these dimensionless measures of
nonlinearity does not invalidate the analytic expansion.
These coefficients, large compared to 1, are multiplied
by powers of the strain. The proper dimensionless mea-
gures of the importance of various nonlinear terms are

B(V -u), §(V - u)?, etc.
2.4 Experiment

When the nonlinear coefficients A, B and C are mea-
sured for rocks they are found to be several orders of
magnitude greater than for Al, HyO, etc. Nonetheless
Eqs. (1)-(4) are used for rocks. That is, rocks are as-
sumed to be homogeneous materials that do not differ
from Al qualitatively but only quantitatively. The phys-
ical mechanism of nonlinearity in normal materialg is an
anharmonic interaction of microscopic origin. It is due
for example to the shape of the interatomic van der Waal
forces. However the fact Aok >> Aa) does not mean
that the interatomic force in rock is orders of magni-
tude different from that in Al. It means that the source
of the important elasticity in rock is in mechanical el-
ements different in character from those in Al These
elements are the structural features in the rock, typi-
cally of size 1 um, ie., mesoscopic. Their mechanical
behavior masks the underlying elastic behavior due to
the atomic scale forces. If we use the traditional theory
it is equivalent to saying that these very different me-
chanical elements are nonetheless at most quantitatively
different from the elastic elements in homogeneous ma-
terials. They are not qualitatively different. To the con-
trary, experimental evidence gives us reason to believe
that this is not true,

The resulis of experimental measurements present a num-
ber of puzzles for which the traditional theory provides
no ready explanation. For example, the traditional the-
ory is unable to explain the relationehip between modu-
lue measured dynamically and modulus measured stat-
ically. But even before the five-constant theory is ap-
plied to the dynamic/static puzzle there is something
amiss. Rocks have a stress-strain equation of state with
hysteresis and discrete memory (Holcomb, 1981; Gist,
1994; Scholz and Hickman, 1983). In rock the stress is
not an analytic function of the strain. Neither is the
energy density. This simplest of observations is at odds
with the basic starting point of the traditional theory,
Eq. (1).

An explanation for why a theoretical model strikingly at
odds with empirical facts has been employed, consists of
arguing that: a) nonlinear effects are small, so precise
treatment is not necessary, and b) hysteresis is a nui-
sance to be ignored or possibly removed by suitable cy-
cling of the sample. Intensified experimental interest in
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nonlinearity in rocks (Meegan et al., 1993; Johnson and
McCall, 1994} and the realization that nonlinear effects
are not modest in several important circumstances (e.g.,
strong motion, near source region propagation, resonant
bar behavior) require us to do better. There is need for
a theoretical framework that is faithful to the nature
of rock and capable of qualitative and quantitative de-
scription of rock properties.

3 The new paradigm

The elastic properties of a rock are determined by the
principal mechanical elements of which it is composed.
These mechanical elements are the structural features in
the interior of the rock, the medley of inhomogeneities
remarked on above. They are a complicated set of ob-
Jects, each a structural anecdote with properties spe-
cific to its details. We proceed by a method that avoids
adopting a detailed model for these structural features,
e.g., cracks (O’Connell and Budiansky, 1978; Cheng and
Toksdz, 1979), friction between surfaces (Hilbert et al.,
1994). However, we cannot altogether avoid assigning
properties to the mechanical elements, e.g., a spring con-
stant, or an equilibrium length. We adopt a minimalist
point of view and assign to each mechanical element
no more characterizing properties than are necessary to
meet data. Onme of the virtues of the new paradigm is
that it provides a recipe for extracting the properties
assigned to the mechanical elements from experiment.

3.1 The ingredients

The elastic properties of a rock are due to an assembly
of mechanical elements. To calculate the elastic prop-
erties of the rock from the properties of the mechanical
elements we need several ingredients.

1. Represent the elastic properties of the rock by the
elastic properties of a lattice of mechanical elements.
The mechanical elements are structural features of
typical size 1um. Thus the lattice spacing between
mechanical elements is neither microscopic (10-%
em), nor macroscopic (1 cm). The mechanical ele-
ments and the lattice on which they reside involve
mesoscopic length scales.

2. Model the mechanical elements with a hysteretic
set of springs.

3. Prescribe the pressure protocol by which the cur-
rent state of the rock was obtained.

4. Prescribe an assembly procedure. That is, a com-
putational procedure for turning 1-3 into an equa-
tion of state, e.g., effective medium theory (EMT)
or numerical integration.

Item 3 has special importance. Rocks are made up of
mechanical elements of such complexity that there is

| |
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Fig. 1. Rudimentary elastic unit. The elastic properties of the
macroscopic syatem are due to an ensemble of hysteretic meso-
scopic units. A unit is modeled ae having an equilibrium length
that switches between two states hysteretically.

no single answer to “what is the velocity of sound in
Berea sandstone at 10 MPa?” The answer to this ques-
tion depends on how the rock got to 10 MPa. Rocks are
made up of mechanical elements whose properties de-
pend upon how they got to their current pressure. Thus
the nature of the mechanical elements confers special
atatus on the pressure protocol. A theory that does not
give the pressure protocol this status cannot be right.

As we proceed we will put aside for the moment dis-
cussion of attenuation, the influence of pore fluids, etc.
These important features can be added in a natural way
once the basic ideas are in hand.

3.2 The elastic elements

A central construct, Preisach-Mayergoyz space, is in-
troduced as a device to keep track of the state of the
mechanical elements (Preisach, 1935; Mayergoyz, 1985).
We adopt a simple model for the mechanical elements,
taking them to be springs (see Fig. 1) that enforce two
equilibrium lengths, {. and l;, according to the pressure,
Thus a given mechanical element is characterized by two
pairs of numbers, (I.,[,) and (P, P,). Here P, (P,) is
the pressure at which the mechanical element switches
from enforcing the longer length (shorter length), I, (1.),
to enforcing the shorter length (longer length), I. (i),
as the pressure is increased (decreased). This choice
for the behavior of the mechanical elements will let us
illustrate matters of principle with 2 minimum of math-
ematical complication. Further, this choice is suggested
by the empirical fact about the o-¢ relation in rock that
upon pressure reversal the strain stays in.
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Fig. 2. Preisach-Mayergoyz space (P-M space). The mechanical
elements have hysteretic properties characterized by the pressure
pair (P;, P,). For each mechanical element in the system the point
{Pe, Po) is plotted in Pe-F, space. The density of points is repre-
sented by p(Pc, o). Here 1000 pointa generated by Egs. (15) and
{16) are shown. This density is used in the majority of calculations
in Sect, 3,

3.3 Preisach-Mayergoyz (P-M) space

The rock is made up of mechanical elements (Fig. 1)
with a spectrum of the basic properties, 1.e., each ele-
ment is described by two pairs {(I;,[l;) and (P, P,). A
further simplification ie made by taking [, and [, to be
the same for all mechanical elements. Then the me-
chanical elements differ from one another only because
of the pressure pair (P,, P,) at which they respond. To
track the behavior of the mechanical elements, we plot
the point (P., P,) for each element in P.-F, space or
Preisach-Mayergoyz (P-M) space. A point on the diag-
onal, at P, = F,, corresponde to a mechanical element
that closes and opens at the same pressure. This me-
chanical element is not hysteretic, although it behaves
differently at low pressure, where it enforces l,, than at
high pressure, where it enforces .. In Fig. 2 we show an
example of P-M space constructed by the rule given in
Eqs. (15)-(16) below.

3.4 The pressure protocol

Let us follow the mechanical elements through an exam-
ple pressure protocol, shown in Fig. 3a. In Table 1 we
list several points on the pressure protocol and indicate
the portion of P-M space in which the mechanical ele-
ments are closed (the separation I, is enforced). For ex-
ample at point A the mechanical elementsin the triangle
OAH of Fig. 3b are closed (P exceeds P, for these ele-
ments). Further increase of the pressure to B closes the
mechanical elements in HABG. The pressure reversal
at B, back to A’ in Fig. 3a, re-opens (the separation [, is
enforced) the mechanical elements in the triangle ABZ,
where Z is the point of intersection of AE and BG. As
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Fig. 3. Pressure protocol and P-M space. (a) The pressure pro-
tocol, P as a function of time. The mechanical elements that are
in their closed configuration can be tracked in (b) P-M space. As
thie pressure protocol is followed, the area of P-M space in which
the mechanical elements are in their closed configuration is shown
in Table 1.

the pressure is increased from A to B the mechanical
elements in ABGH change state. Upon pressure rever-
sal, from B to A/, only the mechanical units in ABZ
return to their original state. Thus there is hysteresis
in the number of open and closed mechanical elements.
This hysteresis is the source of the macroscopic hystere-
gis of the rock. One can follow pressure protocols that
include interior loope or nested interior loops and show
that discrete memory (end point memory) is a result of
using the P-M space picture.

The P-M space picture we are developing treats the in-
dividual mechanical elements as independent. Each sees
the external pressure and responds to it. This is an ap-
proximation to the truth. The random arrangements
of mechanical elements in the rock will cause the rock
to carry the pressure inhomogeneously; some mechani-
cal elements will have to support more (less) than the
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Table 1. Pressure vs P-M space configuration. The pressure
points in Fig, 3a are listed in column 1. In column 2 the part of
P-M space with closed elastic elements is indicated, Fig. 3b.

Pressure Pont  Closed Area

A OAHO

B OBGO
A’ OAZGO
B’ OBGO

C OCF

B” OBDFO
A" QAEFO

average pressure. An experimental test can be made
to test the validity of the P-M space independent el-
ement approximation. The two pressure protocols in
Fig. 4a should produce the same o-¢ hysteresis loop pro-
vided there is no interaction between the mechanical el-
ements in CDEF and those in 123 in Fig. 4b. With
the first pressure protocol the mechanical elements in
CDEF are in their open configuration as the pressure
cycle 123 takes place. With the second pressure proto-
col the mechanical elements in CDEF are in their closed
configuration as the pressure cycle 123 takes place. If
the two hysteresis loops are congruent the state of the
mechanical elements in CDEF has not influenced the
mechanical elements that respond to the 123 pressure
cycle.

This example demonstration of hysteresis and discrete
memory is independent of the procedure for finding the
macroscopic elasticity from the collection of mechanical
elements. Hysteresis and discrete memory are inherent
in the behavior of the mechanical elements fo be assem-
bled. The precise rule of assembly, e.g., effective medium
theory (EMT), does not effect the outcome.,

3.5 Calculations of o-¢

To calculate an example stress-strain relation we take
the following steps.

1. Take the lattice of mechanical elements to be a cne
dimensional array of N elements, i =1,...,N.

2. Assign the same set of lengths to each mechanical
element,

=10, L.=09 Vi (14)
The strain field is our goal, thus the relevant quan-

tity is (I, —ic)/l, and it is unnecessary to specify the
units of length. Microns would be sensible units.

3. Distribute the pairs (P, P,) according to

p(P.) = 100r, (15)

p(Po) = p(Pe)v/Ta) (16)

100 ,
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Fig. 4. Congruence and independence. (a) Two pressure proto-
cols are shown that lead to a closed cycle 1 — 2 — 3. These pres-
sure protocols differ in termns of the configuration of mechanical
elements in P-M space, (b). In the first protocol the mechanicalel-
ements in CDEF are open; in the second protocol they are closed.
If the stress-strain loop associated with the cycle 1 — 2 — 3 in the
same for both protocols then the mechanical elements in CDEF
do not interact with the mechanical elements in 123. This is an
example of an empirical test of the validity of the simple picture
we are using.



where p(P) is the probability of the occurrence of
P, and r; and r, are random numbers distributed
uniformly between 0 and 1.

4. Use the pressure protocol shown in Fig. 3a.
From 1 and 2 it follows that the length of the sample is
L=N[09f+1.01- f))], 17

where [ is the closed fraction of the mechanical ele-
ments. The fraction f is a function of the pressure pro-
tocol. The L-f relationship is directly related to the
L-P relationship; it is the elastic equation of state. In
Fig. 5a we show the g-¢ relation, [L(P) — L(0)]/L(0)
va P, for the pressure protocol in Fig. 3a. At P = (),
f =0, and L(0) = Nl,. Note the hysteresis and end
point memory. The r-¢ equation of state in Fig. 5a is
found from following the pressure numerically through
the P-M space of Fig. 2 with N = 8000.

3.6 The modulus

Given the stress-strain relation, we can study the elastic
modulus. The stress-strain relation is hysteretic with
end point memory. Thus we need a definition of the
modulus that respects these properties and is consiatent
with experiment. A o-¢ equation of state results from a
quasistatic measurement. We will refer to such a mea-
surement as static and the modulus derived from such a
measurement as the static modulus. The static modulus
is a measure of the pressure response of the system and
we define it as follows.

1. If the pressure is being increased, P = P + AP,

1__ 1 LP+AP)-L(P)
K~ I(P) AP (18)

2. I the pressure is being decreased P — P — AP,

1__ 1 LP)-L(P~AP)
K~ L(P) —-AP (19)

This definition is given in terms of the inverse of the
modulus for later convenience. It is designed so that it
does not involve pressure reversal.

An illustration of the modulus calculated in this way is
given in Fig. 5b. The stress-strain curves from which
the modulus is calculated are shown in Fig. 5a. The
static modulus has a bowtie-like shape. At the points of
pressure reversal it is discontinuous. The static modulus
satisfies the equation

f deK =0, (20)

where the integral is around a pressure protocol from an
initial configuration and returning in P-M space to that
configuration.
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Fig. 5. Equations of state. (a) The stress-strain equation of state
for the the P-M space density shown in Fig. 2 and the pressure
protocol shown in Fig. 6a. This equation of state was calculated
using naing Eq. (17) and ¢ = (L{P) — L(0))/L(0). (b) The static
modulus as a function of strain corresponding to (a). The modulus
is shown for the strain interval near the interior loop corresponding
to the pressure cycle 60 — 30 — 60. Thin is equivalent to a strain
loop 0.0787 — 0.067 — 0.078. Note the bowtie character of the
behavior of the modulue as this loop is traversed.
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In Sect. 5 we develop thie scheme further to discuss the
dynamic response of the rock. Before we turn to dynam-
ica we discuss the determination of the contents of P-M
gpace. As P-M space is the central construet from which
the elastic properties of the rock are found we want to
do better than guess p(P,, P,).

4 The new paradigm backward

The central construct from which the static properties
of the rock are determined is P-M space. Using the P-
M space picture we found the a-¢ equation of state and
the static modulus. This forward modeling was easy
because we chose an arbitrary density p(P,, P,) of me-
chanical elements in P-M space, Eqs. (15)-(16). There
are a couple of ways in which we might find a more suit-
able p(P,, P,). One procedure is to decide upon a model
for the structural features of importance and to develop
its consequences. The work of O’Connell and Budian-
gky (1978) and Cheng and Toksdg (1979) typifies this
approach. A second procedure is to try to extract suit-
able information from experiment. That is, to attempt
to solve an inverse problem. Given some o-¢ data, what
are the properties of the mechanical elements responsi-
ble for it? Here we discuss this inverse problem.

4.1 p(P.,P,) from the static modulus

The relationship between p(P,, P,) and the static mod-
" ulus depende upon the ingredients to be assembled and
the assemnbly procedure. In Sect. 3.4 we chose particu-
larly simple properties for the ingredients. This choice
led to the equation of state, Eq. (17), and will let us
explore the K-p relation explicitly. Combining the defi-
nition of the modulus, Eqs. (18)-(19), with the equation
of state, Eq. (17), we have

1

E=E[f(P+AP)-f(P)], (21)
when the pressure is being increased, and

1 Ac

&= asli(P)~ f(P - AP)]. 22)

when the pressure is being decreased. The change in
strain Ac ss (I, —1:)/l,. Note that f(P+AP)— f(P) in
Eq. (21) is related to a column region in P-M space (see
Fig. 6) and f(P) — f(P — AP) in Eq. (22) is related to
a row region in P-M space. As the two pressure points
are brought close together, i.e., a8 AP is decreased, the
measurements of K become measures of narrow strips of
the density in P-M space. Elaborate pressure protocols
permit examination of very particular collections of me-
chanical elements (see the discussion involving Fig. 4).

4.2 Implementation

A procedure suggested by Eqs. (21)-(22) has been im-
plemented by Guyer et al. (1995) as described below,

100 , ,
80 —
60 ]

ﬂ“‘o
40} / -

/ 5
20} yd TOW
E
0 | 9 1 |
0 20 40 p 60 80 100
Fig. 6. P-M space and the modulus. The static modulus is

related to the change in the strain accompanying a small pressure
change. Small changes in pressure bring about the participation
of additional mechanical elements in a column (if the pressure is
being increased) or a row (if the presure is being decreased). This
leads to the possibility of relating row and column sume to the
inverse modulus. See Eqg. (23) and (24).

1. The o-¢ data, shown in Fig. 7, was taken on a Berea
sandstone using the pressure protocol shown in the
inset of Fig. 8 (Boitnott, 1993).

2. For the largest pressure loop, the primary loop, the
pressure protocol is 0.7 MPa — 13.5 MPa — (.7
MPa. The 2280 measured (P, ¢) pairs on the pri-
mary loop (Fig. 8) were smoothed and used to con-
struct a K-P curve with 60 pairs (K, P), 30 values
of K for pressure increase and 30 values of K for
pressure decrease.

3. A P-M space with 0.7 €< P, P, < 13.6 MPa was
ruled into 30x 30 boxes, at (P., P,} = (mAP,nAP),
where AP = (.12 MPa, and m and n are integers
from 1 to 30.

4. From Eq. (21) we have

% K(P y = Ep(m,.v), (23)

where P, = mAP. From Eq. (22) we have

7= K(P ;= zp(t ) (24)

where P, = nAP,1 <m < 30,1 <n < 30 and
p(m,n) is the number of mechanical units in the
box at (P, P,) = (mAP,nAP).

5. Equations (23)-(24) are 60 equations for 30 x (30+
1)/2 = 465 numbers. The inversion for p(m,n)
is highly underconstrained. A simulated annealing
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Fig. T. Stress-strain data on Berea sandstone. Stress is plotted
as a function of strain for the pressure protocol shown in the inset
in Fig. 8. Details of the experiment from which these data are
taken are found in Boitnott (1993).

procedure was used to find the 465 numbers p(m, n)
(Press et al., 1986).

Details of carrying out the calculation described here
are found in the paper by Guyer et al. (1996). The
results of that calculation are shown as the P-M space
density in Fig. 9. Roughly 50% of the mechanical units
are on the diagonal within our ability to resolve it, i.e.,
the limit set by AP = 0.12 MPa. The density falls off
rapidly as (P., P,) moves away from the diagonal. This
fall off is least rapid at low pressure. The majority of the
hysteretic mechanical elements respond at low pressures.
We can test the adequacy of this determination of
p(Pe, P,) by looking at pressure protocols different from
the primary pressure protocol that was used to learn
p(Pe, P,). The experiment that carried the rock through
the primary protocol also carried it through 4 smaller,
closed pressure loops. The modulus from these loops
was calculated from the experimental data as described
in 1 and 2 above. It was also calculated using the scheme
of Sect. 3, Eqs. (18)—(19), and the p(P, P,) in Fig. 9.
Comparison of the experimental and theoretical deter-
mination of the modulus for these loops is shown in
Fig. 10. The agreement is gratifying.

5 Dynamics

In Sect. 3 we used the P-M space picture to describe and
understand the static behavior of a rock. We showed
how to use experimental data to learn the contents of
P-M space, p(P,, P,), in Sect. 4. Here we turn to the
use of the P-M space picture to describe the response of
a rock to dynamic disturbances, i.e., to the propagation
of sound waves. We adopt the view that a sound wave
propagating in a material carries the material through
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Fig. 8. Inverss modulus va pressure. The inverse modulus, cal-
cualated according to Egs. (18) and (19}, for the stress strain data
in Fig. 7. The insert shows the pressure protocol used in taking
the data in Fig. 7.

Fig. 0. P-M space density. The density of mechanical units in P-
M space ig ghown for the analysis of the inverse modulus-pressure
data of Fig. 8 using the scheme described in Sect. 4, The gray
scale is logarithmic.
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Fig. 10. Inverse modulus vz pressure. The dashed curve in the
same as the nolid curve in Fig. 8, the inverse modulus found from
the ¢-¢ data in Fig. 7. The solid curve shows calculation of the
inverse modulus from the P-M space density determined using the
largest stress-strain loop in the data of Fig. 7 and the procedure
described in Sect. 4. In the experiment the largest pressure loop
was traversed twice (see the preasure protocol in Fig. 8 inset); the
P-M space density was found using the inverse modulus from the
second traversal. Sec Guyer =t al. {1995} for details.

a sinusoidal pressure fluctuation, i.e., a sinusoidal pres-
sure protocol of modest amplitude. The rock is brought
to an elastic state, characterized by P, by a quasistatic
pressure protocol. In this state it is subject to a sinu-
soidal pressure disturbance, a sound wave.

5.1 Sound waves

To describe a sound wave in a rock we take the equation
of motion of the displacement field u to be

Pu 8 du
PoE = B (K[‘SP]E) ) (25)

where for illustrative purposes we consider propagation
of a longitudinal disturbance in the z direction, u =
(u,0,0). The elastic modulus in this equation is a func-
tional of the pressure excursion § P, and the density pg is
taken to be constant. We develop a model for K based
on the model of the static response developed above. To
do this we need the density of mechanical units in P-M
space, As the pressure disturbance caused by a sound
wave is modest we only need the density p(P., P,) near
the diagonal, i.e. P, & P,. We assume that near the
diagonal p(P., P,) is of the form

p(Pe, Po) = A(P)§(P. — P,) + pB, (26)

where A(P)§(P.— F,) describes the mechanical elements
in p that have no hysteresis (the elements on the diag-
onal in P-M space), and pg, a constant, describes the
hysteretic mechanical elements (the background density
near the diagonal in P-M space).

We take A to depend on pressure P, where P = P, for
decreases in pressure and P = P, for increases in pres-
sure (see below). The uniform background could also
depend upon P, and P, but already with this form the
model is flexible enough to describe most experiments.
Equation (26) is consistent with the empirical P-M space
in Fig. 10. Choosing P = P+p, where —AP < p < AP,
we expand the diagonal part of the density in p around
P,

2

P(Pc: P,) = [ao +a1p+ dg'%— + - {I E(PO—P¢)+pB.(27)
We use p(P., P,) to find the elastic modulus as the rock
is carried through the sinusoidal pressure protocol P +
AP — P— AP — P+ AP, where P characterizes the
quasiatatic state of the rock before the sound wave of
amplitude AP is turned on. From Egs. (21)-(22) we
find the modulus

!4
7 = AcTs. (28)

The fraction of elements closed f depends on whether
pressure is decreasing or increasing. As the pressure
decreases P+ AP — P — AP,

_ _ F+p Pi+aAP
£(P+p) = fP+AP)+ /F P /P R
- [A(P + p)6(P. - P,) + pB] . (29)

As the pressure increases P — AP — P+ AP,

_ . Ptp P,
fiP+p) = f(P-AP)+ /_ dP, j_ dP,
P-AP P=AP
[AP +P)8(P.— P)+pB].  (30)
Thus

1 2 '
K_i=AE [ag+a1p+ag%---+(AP—P)PB ) (31)

and

1 2 T

ET-zAE [ao+a1p+a3£2—---+(AP+p)pB . (32)
The subscripts T and | indicate that the modulus is
appropriate to pressure increase or decrease; p is the

departure of the pressure from the ambient pressure P.
From Eqs. (31)—(32) we see that:

1. If pg = 0 the modulus is a power series in p and
Ky is equivalent to K. This is essentially the tra-
diticnal theory, sketched in Sec, II, where p ox V-u.

2. For pp # 0 the elastic modulus is hysteretic, K1 #
K.

3. For pg # 0 the elastic modulus depends not only
on the instantaneous value of the pressure but also
on the amplitude of the pressure excursion.



Treating Eq. (25) systematically, we write

Pu 8%u I du
Pow—Km+ﬁ(AK[“]5;), (33)
where
K= Ac(ap + ppAP) — Acay (34)

is the dynamic modulus (the modulus as AP — 0).
Keeping terms to first order in p

AK = Ac [a1 + ppsign (gt_p)] P (35)

The static modulus at ambient pressure P can be calcu-
lated in the same manor as the dynamic modulus. For
the static modulus, as pressure increases f includes all
of the mechanical elements in the vertical column, i.e.,

P P,
Joeatict = /; aP, dP, p(P.,P,). (36)
s}

Clearly fytatic = faynamic so that Kdynunic > Kgtatic-
This result follows from the behavior of p(P., P,). If
there i hysteresis, there are mechanical elements that
are not reversible and thus not on the diagonal in P-M
space. The inequalities in f and K follow. This result
was understood by Walsh (1965) and easily anticipated
from the discussion given by Holcomb (1981). Using
the PM space of Fig. 9 we can make predictions and
comparisons of Katatic and Kaynamie for this sample of
Berea sandstone. We find that at P = 7.22 MPa, the
static moduli are Kt = 10.0 GPa and K| = 13.5 GPa,
while the dynamic modulus is Kgynamic = 23.3 GPa, a
difference of a factor of two without resorting to any
frequency dependent effects.

Wave propagation admitted by Eq. (25) can be described
using the Green function formalism developed by Mec-
Call (1994). The first step in this formalismis to develop
a gystematic hierarchy of equations,

32ug(z,t) —a uo(z, 1)
a2 oz?

2 u
6u5§f,t)_K 1:91‘5::1!) 2 (AK[ 0]5 o). (38)

where u = ug+ 1 +---

= 5(z, 1), (37)

5.2 Longitudinal wave propagation

Suppose S(z,t) in Eq. (37) causes a plane wave, ug &
U cos(kz — wt). The first order correction to ug takes
the form
uy(z,w)

/dz’G(z, z';w)

3 (8Kl o 2524) . )
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From Eq. (36), AK o p & Bug/0z, thus uy o (Jug/dz)?
o 2. Because of the discontinuity in AK, u; contains
all harmonics of the fundamental, ie., w, 2w, 3w, ....
This result is in contrast to the traditional theory in
which each higher harmonic is associated with a higher
power of up. Further development of Eqs. (33)-(35) and
their consequences can be found in McCall (1994); Mc-
Call and Guyer (1994); Guyer et al. (1995).

5.3 Nonlinear attenuation

The hysteresis in a stress-strain measurement is often
used to calculate energy loss. We define the guality

factor @ by
1 AE
5= 3 (40)

where AE is the energy loss per strain cycle and E is
the average energy during a cycle. For AE we take

AE= - f ode, (41)
Po

where § stands for integration over one cycle in time,
and ¢ is the effective stress in Eq. (33),

o= (% + Ax)g_:. (42)

We develop AFE as a series in the strength of the non-
linearity in direct analogy with the method of solution
to Eq. (33) (McCall, 1994). To first order AE = AEy+
AE,, where AEy is the contribution to the energy loss
due to the linear elastic response of the system and

AR, = f AK%“U g :;:dt (43)
Using up oc U cos(kx — wt), we have

2 232
%g::;: x — v g hd sin(Zka — 2t). (44)

The integral around a cycle in time picks out the term
in AK that is proportional to sin(2kz — 2wt). The dis-
continuity in AK, resulting in all harmonics, leads to
nonlinear attenuation. In the work of Day and Minster
(1984), nonlinear attenuation Q) is found to be the cause
of hysteresis. Here, in contrast, we find hysteresis to be
the cause of nonlinear attenuation.

5.4 Resonant bar experiments

In a resonant bar experiment an elastic system is driven
at frequency w and the amplitude of the response at the
driving frequency is detected. At fixed amplitude of the
drive Ap the frequency of the drive is swept through
the resonance of the bar. The amplitude of the drive
is stepped (increased) through a sequence of levels and
the behavior of the frequency response at each drive
level is measured. For a linear elastic material the bar



100

resonates at a frequency that is independent of the drive
level. For a nonlinear elastic material the frequency re-
sponse has a bent tuning-fork shape (Stoker, 1950). For
a rock, this shape is that of a softening nonlinearity, i.e.,
the resonant frequency decreases with increasing drive
amplitude,

Application of the traditional theory of nonlinear elas-
ticity to the resonant bar experiment leads to simple
predictions with verifiable signatures. Because the re-
sponse of the bar is detected at the driving frequency
the important nonlinearities are those that have con-
tributions at the drive frequency. Above we argued
that the cubic anharmonicity, A, B and C, generates
w+w = 2w and w — w = 0. Thus the most important
term in the traditional theory of the resonant bar is the
quartic nonlinearity (McCall and Guyer, 1994). The
quartic nonlinearity leads to w + w ~ w = w with ampli-
tude proportional to the square of the drive level. Thus
the traditional theory predicts a downward frequency
shift,

Aw o A (45)

This result is well known for the soft Duffing oscillator
(Stoker, 1950) and might be expected for rock, where
a softening nonlinearity is found (Johnson and Rasolo-
fosaon, 1996). However, the experimental frequency
ghift for rock is directly proportional to the drive level,
Aw « Ap. Furthermore the order of magnitude of the
observed frequency shift is orders of magnitude greater
than that predicted by the traditional theory (using
plausible values of the quartic nonlinearity).

Recently we have used Eq. (38) to describe the reso-
nant bar experiment (Guyer et al., 1995). The most
important point in the discussion is the form of the dy-
namic modulus. When a wave of pressure amplitude
AP propagates in the system there is a secular change
in the dynamic modulus K due to the term pgAP in
Eq. (34). This term in the modulus gives rise to a shift
in the velocity of sound proportional to AP and thus
to a shift in the resonance frequency proportional to
AP o U. Equation (34) can be made quantitative us-
ing the p(P., P,) for Berea sandstone from Guyer et al.
(1995). A qualitative and quantitative description of the
resonant bar experiment results.

6 Conclusion

In this paper we have given an overview of a comprehen-
sive theory of the elastic behavior of consolidated ma-
terials. The discussion was given in terms of rocks; its
generalization to other materials having the hysteresis
and memory features similar to rock is straightforward.
Some of our results were anticipated by others. Walsh
(1966) recognized the significance of hysteresis in the
static stress-strain equation of state and described the
relationship between static and dynamic modulus, More

recently Nazarov et al. (1988) gave a description of a
resonant bar experiment using a rmodification of the five
constant theory motivated by hysteresis in rock elastic
behavior.

The elastic properties of homogeneous materials are ac-
curately described by the five constant theory. Consol-
idated materials are different and are therefore of in-
terest, i.e., it is the departure of the behavior of con-
solidated materials from that of homogeneous materials
that causes one to give them special attention. We have
sketched the outlines of a theoretical framework to de-
gcribe the elastic properties of consolidated materials.
This theocretical framework is much more complicated
than the five-constant theory. In place of K, u, A, B,
and C' we have introduced p(P,, P,), the density in P-M
space. Let us call the new theoretical framework the p
theory. In the limit that pg — 0, Eqs. (18)—(19), p the-
ory reduces to the five constant theory. Away from this
limit the p theory predicts a variety of behaviors that
have no explanation in the five constant theory: hys-
teresis, discrete memory, Kaynamis > Katatie, nonlinear
attenuation, copious higher harmonics, the outcome of
a resonant bar experiment, etc.

We close with a series of observations about linear and
nonlinear elasticity in rock.

1. The hysteretic mechanical elements with which we
have developed the theory are very simple, only as
complicated as the data requires. The mechani-
cal elements at work in a consolidated material are
much more complicated than this. More compli-
cated models of the mechanical elements should be
considered. More exhaustive o-¢ data sets will force
the use of more elaborate mechanical elements. Even-
tually a detailed picture of the properties of the
mechanical elements will be revealed.

-

2. The one dimensional model we have used is the
result of an effective medium theory (McCall and
Guyer, 1994). Within effective medium theory it is
not possible to explain hysteresis in the elastic con-
stant (Gist, 1994). McCall and Guyer (1994) have
gshown how hysteresis in the modulus can be found
using a mean field theory. Uliimately it will be of
interest to study the static and dynamic behavior of
a lattice of hysteretic elements. Work to be under-
taken in the future is the theoretical investigation
of such systems.

3. One would expect the mechanical elements to re-
spond to the pressure across themselves on a time
scale set by their mechanics. Thus for each mechan-
ical element there is a relaxation time that sepa-
rates its jow frequency response from its high fre-
quency response. We have made no effort to incor-
porate such a time scale in this desceription. Should
a suitable data set demand it, appropriate modifi-
cation of the theory can be made.



4. Hysteretic mechanical elements imply attenuation.
In addition to the nonlinear energy loss that oc-
curs in the hysteretic mechanical elements there
are attenuation mechanisms of the more traditional
kind. For example, the squirt-flow mechanism. The
squirt-flow mechanism and other linear attenuation
mechanisms have been ignored in our presentation.
They are easily added to the linear part of the basic
wave equation as for example in McCall and Guyer

(1994).

5. The inverse problem set by a modulus-strain data
set is ill-posed. We have illustrated the result of
one procedure (simulated annealing) for solving this
problem. Experience may lead to the use of other
inversion procedures.

6. The math/physics problem set by Eq. (25) has in-
trinsic interest. One can imagine a number of sim-
ple models generated by this problem. For example

5 &3 9?
5t“¥+°3 [1~ﬁ+2ﬁ0 ('ax_;n) aT: =0, (46)

where # is the Heaviside function. Thie problem is
similar to the kicked rotor.
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